A terahertz polarization insensitive dual band metamaterial absorber.
نویسندگان
چکیده
Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric layer thickness of the metal-dielectric-metal structure, significantly high absorption can be obtained at specific resonance frequencies. Finite-difference time-domain modeling is used to design the structure of the absorber. The fabricated devices have been characterized using a Fourier transform IR spectrometer. The experimental results show two distinct absorption peaks at 2.7 and 5.2 THz, which are in good agreement with the simulation. The absorption magnitudes at 2.7 and 5.2 THz are 0.68 and 0.74, respectively.
منابع مشابه
Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملDual band metamaterial perfect absorber based on artificial dielectric “molecules”
Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect abso...
متن کاملSix-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure
This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple...
متن کاملDesign, theory, and measurement of a polarization-insensitive absorber for terahertz imaging
We present the theory, design, and realization of a polarization-insensitive metamaterial absorber for terahertz frequencies. Effective-medium theory is used to describe the absorptive properties of the metamaterial in terms of optical constants—a description that has been thus far lacking. From our theoretical approach, we construct a device that yields over 95% absorption in simulation. Our f...
متن کاملUltrathin Six-Band Polarization-Insensitive Terahertz Perfect Metamaterial Absorber Based on a Cross-Cave Patch Resonator
A simple design of an ultrathin six-band polarization-insensitive terahertz perfect metamaterial absorber (PMMA) composed of a metal cross-cave-patch resonator (CCPR) placed over a ground plane was proposed and investigated numerically. The numerical simulation results demonstrate that the average absorption peaks are up to 95% at six resonance frequencies with high quality-factors (>65). In ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2011